Minimally Cationic Cell-Permeable Miniature Proteins via α-Helical Arginine Display

Betsy A. Smith,† Douglas S. Daniels,† Abigail E. Coplin, Gregory E. Jordan, Lynn M. McGregor, and Alanna Schepartz‡,§,¶,†

Departments of Chemistry and Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8107

Received January 4, 2008; E-mail: alanna.schepartz@yale.edu

Protein therapeutics are a blossoming industry, with revenues exceeding $51 billion in 2005 and a growth rate nearly three times that of the overall pharmaceutical industry.1 Although it has been known for 40 years that cationic amino acid polymers can transport molecular cargos across the plasma membrane,2−4 inefficient cellular delivery severely impedes the development of peptide and protein drugs. Oligoarginine sequences are effective at permeating cells5 and have gained popularity for the delivery of protein cargos.5−8 Unfortunately, oligoarginine tags can increase toxicity6 and diminish the stability of appended proteins.3 We recently reported that small, folded proteins containing a minimal cationic motif embedded within a type II polyproline (PPII) helix efficiently cross the plasma membrane of eukaryotic cells.10 Here we demonstrate that an even smaller cationic motif can be embedded within the α-helix of a small, folded protein to generate molecules that penetrate cells significantly more efficiently than oligoarginine-rich sequences or Tat. Our results suggest that the function of cell permeability can be encoded by judicious placement of as few as 2−3 additional arginine residues on a protein α-helix.

The avian pancreatic polypeptide (aPP) is a 36-residue polypeptide composed of an N-terminal PPII helix and a C-terminal α-helix. This well-packed, thermostable structure provides a starting point for the presentation of well-folded PPII and α-helical epitopes that bind protein targets with high affinity and specificity in vitro and in vivo.11−20 We reasoned that substitution of arginines for residues located on the aPP α-helix would impart cell permeability, but perhaps only at the expense of structural stability due to charge−charge repulsion.21 To determine the minimum number of arginine residues that would facilitate cell permeability and retain a stable fold, we synthesized aPP variants aPPαR1, aPPαR5, and aPPαR6 (Figure 1). These molecules contain four, five, or six arginines, respectively, on the solvent exposed face of the aPP α-helix in place of side chains that contribute minimally if at all to protein stability.22 We first characterized the secondary structure of each variant using circular dichroism (CD) spectroscopy (Figure 1B). The CD spectra of aPPαR1 and aPPαR5 were virtually identical to that of aPP, with characteristic negative ellipticity at 208 and 222 nm. By contrast, the spectrum of aPPαR6 indicated significantly less α-helix structure. Temperature-dependent CD analysis demonstrated that each peptide, like aPP, underwent a cooperative melting transition. Each arginine substitution decreases thermostability slightly, with aPPαR1 and aPPαR5 characterized by Tm’s of 54 and 47 °C, near that of aPP; the Tm of aPPαR6 is significantly depressed (35 °C) (Figure SI-1).

We next used flow cytometry to determine whether aPPαR1, aPPαR5, and aPPαR6 penetrated eukaryotic cells. HeLa cells were incubated with 1 μM fluorescently labeled peptide for times between 5 and 90 min and treated with trypsin to remove peptide from the cell surface.23 Cellular penetration of FluαPPαR1, FluαPPαR5, and the well-studied oligoarginine FluR8Y were similar at early times (t < 20 min) (Figure 2A). Surprisingly, uptake of FluR8Y remained constant at longer times whereas uptake of FluαPPαR5 and FluαPPαR6 increased significantly. At an incubation time of 30 min, FluαPPαR6 entered cells more efficiently than FluTat24 but less efficiently than FluR8Y.5 FluAmp25 FluTransportan,26 and FluKLA27 (also known as MAP) (Figure 1C). By contrast, FluαPPαR1 and FluαPPαR5 penetrated cells significantly more effectively than any cell penetrating peptide tested, generating cellular fluorescence 3−4 times that of FluR8Y and 35−45 times that of FluTat. Confocal microscopy confirmed that FluαPPαR1 was internalized to the cytosol and endosomes and was not limited to the cellular membrane (Figure 2C).

The mechanism by which cationic peptides enter cells is not well understood and may vary depending on sequence, conditions, and cargo.28,29 Recent results obtained with live cells imply that endocytosis is often a major pathway.23 Indeed, cellular uptake of FluαPPαR1 and FluαPPαR5 is both temperature- and ATP-dependent (Figure 2B). Moreover, confocal microscopy of cells treated with FluαPPαR1 reveals a punctate pattern of fluorescence in the cytosol (Figure 2C) that colocalizes in part with 10 kDa dextran, a marker of endocytosis (Figure 2D, 2E).30 Together these data suggest a significant contribution from an energy-dependent mechanism such as endocytosis. However, FluαPPαR1 also shows diffuse cytosolic

Figure 1. (A) Miniature protein sequences. Residues that contribute to aPP/YY2 folding are in green; arginines located on the α-helices are in blue. (B) Circular dichroism spectra of aPP, aPPαR1, aPPαR5, and aPPαR6 (10 μM) in PBS (pH 7.4) at 37 °C. See panel A for legend. (C) Mean cellular fluorescence of HeLa cells incubated for 30 min with 1 μM fluorescently labeled peptide in DMEM containing 10% FBS.

1 ‡ Department of Chemistry.
2 † Department of Molecular, Cellular, and Developmental Biology.

10.1021/ja800074v CCC: $40.75 © 2008 American Chemical Society
To evaluate whether a minimal cationic motif could be transferred
endosomal escape or an alternative entry pathway.

staining that is not colocalized with dextran, suggesting either
leaving at 37°C (red), 4°C (orange), and at 37 °C in glucose-free media supplemented with NaN₃ (green), and intracellular localization was quantified by flow cytometry.

Figure 3. (A) HeLa cell uptake of fluorescein-labeled peptides at the
indicated concentration after 30 min at 37 °C as quantified by flow
cytometry. Plot illustrates the mean cellular fluorescence ± the standard
error of three experiments. (B) Confocal microscopy of HeLa cells co-incubated with 5 µM FluR 8 Y and 10 kDa dextran labeled with Alexa Fluor 647 (red) for
30 min at 37°C. (C) Green channel. (D) Red channel. (E) Superposition of
(C), (D), and transmitted light.

Oligoarginine tags can increase cytotoxicity, and thus we
examined the toxicity of all peptides using the CellTiter-Blue cell
viability assay (Promega). Incubation of HeLa cells with any of the
aPP- or YY2-based peptides at concentrations as high as 50
µM (50-fold higher than required for penetration) for 6 h (70-fold longer than necessary for uptake) led to less than 10% loss in viability (Figure SI-3).

Previously we described a series of miniature proteins that made
use of their PPII helix to bind SH3 domains selectively in vitro, one such molecule, YY2, activated Hck kinase in cell extracts. To evaluate whether a minimal cationic motif could be transferred
from aPP to an alternative protein context, we synthesized YY2²R₁, YY2²R₂, and YY2²R₃ (Figure 1A). Although FluYY2²R₁ did not
penetrate cells appreciably at 1 µM, FluYY2²R₂ and FluYY2²R₃ did so at levels similar to FluPP²R₁, the most cell-permeant aPP
derivative studied (Figure 1C). Unexpectedly, even FluYY2, whose sequence contains only two arginine residues within the α-helix, penetrates cells, albeit at higher concentration. At 6 µM, FluYY2 shows intracellular fluorescence twice that of FluR 8 Y (Figure 3A). This observation highlights the expanding utility of miniature
proteins, which, like certain peptoids, may not require additional
engineering to offer cell permeability.

In conclusion, we have created a second family of minimally cationic miniature proteins that effectively cross the plasma membrane of eukaryotic cells. Although introduction of multiple arginine residues decreases the value of T_M, judicious placement and empirical charge minimization afford miniature proteins that are both well-folded and cell permeable. As these scaffolds are capable of supporting high affinity and specificity interactions in vitro and in vivo, we expect the additional encoding of cellular permeability to significantly expand their utility.

Acknowledgment. This work was supported by the NIH (Grant GM 65453 and 59843), the National Foundation for Cancer Research, and in part by a grant to Yale University, in support of A.S., from the Howard Hughes Medical Institute.

Supporting Information Available: Experimental methods, circular
dichroism, and cell viability data. This material is available free of charge via the Internet at http://pubs.acs.org.

References