For Immediate Release: October 13, 2006

Yale and NFCR Launch Research Center for Cancer Drug Design and Discovery

New Haven, Conn. — Yale University and the National Foundation for Cancer Research (NFCR) announced the establishment of an NFCR Center for Anti-Cancer Drug Design and Discovery to develop new beta-peptide inhibitors that will play critical roles in the fight against many types of cancer.

Funded by a five-year, $750,000 grant from the NFCR, the center will be led jointly by Alanna Schepartz, the Milton Harris, ’29 Ph.D. Professor of Chemistry, and William Jorgensen, the Whitehead Professor of Chemistry at Yale.

“We are delighted that the NFCR has chosen to support Yale as a place where cutting-edge drug discovery research in chemistry is making, and will continue to make, an impact in the fight against cancer,” said Yale Provost Andrew Hamilton.

The new NFCR Center will work to develop a better understanding of how beta-peptides can be designed to disrupt protein-protein interactions that transmit cell signals. When proteins behave abnormally, they often send incorrect signals that result in uncontrolled cell growth and division, and cancer. In their research, Schepartz and Jorgensen will focus on developing new, more effective approaches to inhibit these abnormal protein-protein interactions and thereby block transmission of cellular signals that lead to cancer growth.

Unlike the most commonly used small molecule inhibitors, beta-peptides have a chemical structure very similar to that of their target proteins, allowing the drug to bind the target proteins more specifically and inhibit them more effectively. The Schepartz/Jorgensen team will use both cutting-edge experimental chemistry and elegant computer modeling to design and optimize beta-peptide inhibitors of a wide range of targets. Since beta-peptides are stable within the human body, their research has the potential to create a completely new technology platform for more effective and long-lasting anticancer drugs.

“This new center provides a vital link among the worldwide network of NFCR sponsored scientists that will significantly move our protein research to the forefront of cancer research,” Schepartz said. “At Yale, we believe in the value of exploring every avenue in our quest to cure cancer, and with this partnership between NFCR and the university, we move one step closer to that goal.”

The NFCR Center at Yale will collaborate with over 40 additional cancer researchers at universities and hospitals worldwide, and become a part of one of the largest cancer research networks in the world. Other NFCR Centers are at Oxford, Case Western Reserve, University of Alabama-Birmingham, University of California-
Berkeley, Dana Farber Cancer Center, University of Arizona, Freie Universität Berlin, and the Institute of Medicinal Biotechnology in Beijing to form a broader international collaborative network of top researchers.

“The NFCR Center for Anti-Cancer Drug Design and Discovery at Yale University, will provide a new and vital link to the development of drug design that will undoubtedly lead to new, novel anticancer drugs that will help save lives,” said Franklin Salisbury, Jr., President of the National Foundation for Cancer Research.

The Center was launched today at a mini-symposium in the new Class of ’54 Chemical Research Building on Science Hill. In addition to Directors Schepartz and Jorgensen, speakers included NFCR President Franklin Salisbury, Jr., and Yale Provost Andrew Hamilton.

Since it’s founding in 1973, NFCR has spent more than $230 million funding basic science cancer research and cancer prevention education focused on understanding how and why cells become cancerous. NFCR is dedicated to funding scientists who are discovering cancer’s molecular mysteries and translating these discoveries into therapies that hold the hope for curing cancer. For more information, visit www.NFCR.org or call 1-800-321-CURE (2873).

#

National Foundation for Cancer Research http://www.NFCR.org
Alanna Schepartz http://www.chem.yale.edu/faculty/schepartz.html
William Jorgensen http://www.chem.yale.edu/faculty/jorgensen.html
Andrew Hamilton http://www.yale.edu/provost/html/office.html

#.##.##
Research Center for Cancer Drug Design and Discovery Established at Yale University and the National Foundation for Cancer Research

NEW HAVEN, Conn.--(BUSINESS WIRE)--Oct 13, 2006 - Yale University and the National Foundation for Cancer Research (NFCR) announced the establishment of an NFCR Center for Anti-Cancer Drug Design and Discovery to develop new beta-peptide inhibitors that will play critical roles in the fight against many types of cancer.

Funded by a five-year, $750,000 grant from the NFCR, the center will be led jointly by Alanna Schepartz, the Milton Harris, '29 Ph.D. Professor of Chemistry, and William Jorgensen, the Whitehead Professor of Chemistry at Yale.

"We are delighted that the NFCR has chosen to support Yale as a place where cutting-edge translational research in chemistry is making, and will continue to make, an impact in the fight against cancer," said Yale Provost Andrew Hamilton.

The new NFCR Center will work to develop a better understanding of how beta-peptides can be designed to disrupt protein-protein interactions that transmit cell signals. When proteins behave abnormally, they often send incorrect signals that result in uncontrolled cell growth and division, and cancer. In their research, Schepartz and Jorgensen will focus on developing new, more effective approaches to inhibit these abnormal protein-protein interactions and thereby block transmission of cellular signals that lead to cancer growth.

Unlike the most commonly used small molecule inhibitors, beta-peptides have a chemical structure very similar to that of their target proteins, allowing the drug to bind the target proteins more specifically and inhibit them more effectively. The Schepartz/Jorgensen team will use both cutting-edge experimental chemistry and elegant computer modeling to design and optimize beta-peptide inhibitors of a wide range of targets. Since beta-peptides are stable within the human body, their research has the potential to create a completely new technology platform for more effective and long-lasting anticancer drugs.

"This new center provides a critical research platform within the worldwide network of NFCR-sponsored scientists that will significantly move our protein research to the forefront of cancer research," Schepartz said. "At Yale, we believe in the value of exploring every avenue in our quest to cure cancer, and with this partnership between NFCR and the university, we move one step closer to that goal."

The NFCR Center at Yale will collaborate with scientists working in over 40 additional cancer centers and laboratories at universities and hospitals worldwide, and become a part of one of the largest cancer research networks. Other NFCR Centers are located at Oxford University, Case Western Reserve University, University of Alabama-Birmingham, the Dana Farber Cancer Institute, Translational Genomics Research Institute, Vanderbilt University, Freie Universitat Berlin, and the Institute of Medicinal Biotechnology of the Chinese Academy of Medical Sciences in Beijing to form a broader international collaborative network of top researchers.

"The NFCR Center for Anti-Cancer Drug Design and Discovery at Yale University will stimulate new approaches to drug design and development that will undoubtedly lead to novel anticancer drugs and help save lives," said Franklin Salisbury, Jr., President of the National Foundation for Cancer Research.

Since it's founding in 1973, NFCR has spent more than $230 million funding basic science cancer research and cancer prevention
education focused on understanding how and why cells become cancerous. NFCR is dedicated to funding scientists who are
discovering cancer's molecular mysteries and translating these discoveries into therapies that hold the hope for curing cancer. For
more information, visit www.NFCR.org or call 1-800-321-CURE (2873).

Contact
National Foundation for Cancer Research
Silas Deane, 615-319-6007
sdeane@nfcr.org
Yale University and the National Foundation for Cancer Research (NFCR) announced the establishment of an NFCR Center for Anti-Cancer Drug Design and Discovery to develop new beta-peptide inhibitors that will play critical roles in the fight against many types of cancer.

Funded by a five-year, $750,000 grant from the NFCR, the center will be led jointly by Alanna Schepartz, the Milton Harris, ’29 Ph.D. Professor of Chemistry, and William Jorgensen, the Whitehead Professor of Chemistry at Yale.

"We are delighted that the NFCR has chosen to support Yale as a place where cutting-edge translational research in chemistry is making, and will continue to make, an impact in the fight against cancer," said Yale Provost Andrew Hamilton.

The new NFCR Center will work to develop a better understanding of how beta-peptides can be designed to disrupt protein-protein interactions that transmit cell signals. When proteins behave abnormally, they often send incorrect signals that result in uncontrolled cell growth and division, and cancer. In their research, Schepartz and Jorgensen will focus on developing new, more effective approaches to inhibit these abnormal protein-protein interactions and thereby block transmission of cellular signals that lead to cancer growth.

Unlike the most commonly used small molecule inhibitors, beta-peptides have a chemical structure very similar to that of their target proteins, allowing the drug to bind the target proteins more specifically and inhibit them more effectively. The Schepartz/Jorgensen team will use both cutting-edge experimental chemistry and elegant computer modeling to design and optimize beta-peptide inhibitors of a wide range of targets. Since beta-peptides are stable within the human body, their research has the potential to create a completely new technology platform for more effective and long-lasting anticancer drugs.

"This new center provides a critical research platform within the worldwide network of NFCR-sponsored scientists that will significantly move our protein research to the forefront of cancer research," Schepartz said. "At Yale, we believe in the value of exploring every avenue in our quest to cure cancer, and with this partnership between NFCR and the university, we move one step closer to that goal."

The NFCR Center at Yale will collaborate with scientists working in over 40 additional cancer centers and laboratories at universities and hospitals worldwide, and become a part of one of the largest cancer research networks. Other NFCR Centers are located at Oxford University, Case Western Reserve...
University, University of Alabama-Birmingham, the Dana Farber Cancer Institute, Translational Genomics Research Institute, Vanderbilt University, Freie Universitat Berlin, and the Institute of Medicinal Biotechnology of the Chinese Academy of Medical Sciences in Beijing to form a broader international collaborative network of top researchers.

"The NFCR Center for Anti-Cancer Drug Design and Discovery at Yale University will stimulate new approaches to drug design and development that will undoubtedly lead to novel anticancer drugs and help save lives," said Franklin Salisbury, Jr., President of the National Foundation for Cancer Research.

Since it's founding in 1973, NFCR has spent more than $230 million funding basic science cancer research and cancer prevention education focused on understanding how and why cells become cancerous. NFCR is dedicated to funding scientists who are discovering cancer's molecular mysteries and translating these discoveries into therapies that hold the hope for curing cancer. For more information, visit www.NFCR.org or call 1-800-321-CURE (2873).

© 2006 Genetic Engineering News, All Rights Reserved
October 13, 2006 09:32 AM Eastern Time

Research Center for Cancer Drug Design and Discovery Established at Yale University and the National Foundation for Cancer Research

NEW HAVEN, Conn.--(BUSINESS WIRE)--Yale University and the National Foundation for Cancer Research (NFCR) announced the establishment of an NFCR Center for Anti-Cancer Drug Design and Discovery to develop new beta-peptide inhibitors that will play critical roles in the fight against many types of cancer.

Funded by a five-year, $750,000 grant from the NFCR, the center will be led jointly by Alanna Schepartz, the Milton Harris, '29 Ph.D. Professor of Chemistry, and William Jorgensen, the Whitehead Professor of Chemistry at Yale.

“We are delighted that the NFCR has chosen to support Yale as a place where cutting-edge translational research in chemistry is making, and will continue to make, an impact in the fight against cancer,” said Yale Provost Andrew Hamilton.

The new NFCR Center will work to develop a better understanding of how β-peptides can be designed to disrupt protein-protein interactions that transmit cell signals. When proteins behave abnormally, they often send incorrect signals that result in uncontrolled cell growth and division, and cancer. In their research, Schepartz and Jogensen will focus on developing new, more effective approaches to inhibit these abnormal protein-protein interactions and thereby block transmission of cellular signals that lead to cancer growth.

Unlike the most commonly used small molecule inhibitors, β-peptides have a chemical structure very similar to that of their target proteins, allowing the drug to bind the target proteins more specifically and inhibit them more effectively. The Schepartz/Jorgensen team will use both cutting-edge experimental chemistry and elegant computer modeling to design and optimize β-peptide inhibitors of a wide range of targets. Since β-peptides are stable within the human body, their research has the potential to create a completely new technology platform for more effective and long-lasting anticancer drugs.

“This new center provides a critical research platform within the worldwide network of NFCR-sponsored scientists that will significantly move our protein research to the forefront of cancer research,” Schepartz said. “At Yale, we believe in the value of exploring every avenue in our quest to cure cancer, and with this partnership between NFCR and the university, we move one step closer to that goal.”

The NFCR Center at Yale will collaborate with scientists working in over 40 additional cancer
centers and laboratories at universities and hospitals worldwide, and become a part of one of the largest cancer research networks. Other NFCR Centers are located at Oxford University, Case Western Reserve University, University of Alabama-Birmingham, the Dana Farber Cancer Institute, Translational Genomics Research Institute, Vanderbilt University, Freie Universität Berlin, and the Institute of Medicinal Biotechnology of the Chinese Academy of Medical Sciences in Beijing to form a broader international collaborative network of top researchers.

“The NFCR Center for Anti-Cancer Drug Design and Discovery at Yale University will stimulate new approaches to drug design and development that will undoubtedly lead to novel anticancer drugs and help save lives,” said Franklin Salisbury, Jr., President of the National Foundation for Cancer Research.

Since it’s founding in 1973, NFCR has spent more than $230 million funding basic science cancer research and cancer prevention education focused on understanding how and why cells become cancerous. NFCR is dedicated to funding scientists who are discovering cancer’s molecular mysteries and translating these discoveries into therapies that hold the hope for curing cancer. For more information, visit [www.NFCR.org](http://www.nfcr.org) or call 1-800-321-CURE (2873).

Contacts
National Foundation for Cancer Research
Silas Deane, 615-319-6007
sdeane@nfcr.org

[Print this Release](#) [Return to Headlines](#)
NEW HAVEN, Conn.--(BUSINESS WIRE)--Yale University and the National Foundation for Cancer Research (NFCR) announced the establishment of an NFCR Center for Anti-Cancer Drug Design and Discovery to develop new beta-peptide inhibitors that will play critical roles in the fight against many types of cancer.

Funded by a five-year, $750,000 grant from the NFCR, the center will be led jointly by Alanna Schepartz, the Milton Harris, ‘29 Ph.D. Professor of Chemistry, and William Jorgensen, the Whitehead Professor of Chemistry at Yale.

"We are delighted that the NFCR has chosen to support Yale as a place where cutting-edge translational research in chemistry is making, and will continue to make, an impact in the fight against cancer," said Yale Provost Andrew Hamilton.

The new NFCR Center will work to develop a better understanding of how β-peptides can be designed to disrupt protein-protein interactions that transmit cell signals. When proteins behave abnormally, they often send incorrect signals that result in uncontrolled cell growth and division, and cancer. In their research, Schepartz and Jogensen will focus on developing new, more effective approaches to inhibit these abnormal protein-protein interactions and thereby block transmision of cellular signals that lead to cancer growth.

Unlike the most commonly used small molecule inhibitors, β-peptides have a chemical structure very similar to that of their target proteins, allowing the drug to bind the target proteins more specifically and inhibit them more effectively. The Schepartz/Jorgensen team will use both cutting-edge experimental chemistry and elegant computer modeling to design and optimize β-peptide inhibitors of a wide range of targets. Since β-peptides are stable within the human body, their research has the potential to create a completely new technology platform for more effective and long-lasting anticancer drugs.

"This new center provides a critical research platform within the worldwide network of NFCR-sponsored scientists that will significantly move our protein research to the forefront of cancer research," Schepartz said. "At Yale, we believe in the value of exploring every avenue in our quest to cure cancer, and with this partnership between NFCR and the university, we move one step closer to that goal."

The NFCR Center at Yale will collaborate with scientists working in over 40 additional cancer centers and laboratories at universities and hospitals worldwide, and become a part of one of the largest cancer research networks. Other NFCR Centers are located at Oxford University, Case Western Reserve University, University of Alabama-Birmingham, the Dana Farber Cancer Institute, Translational...
Genomics Research Institute, Vanderbilt University, Freie Universität Berlin, and the Institute of Medicinal Biotechnology of the Chinese Academy of Medical Sciences in Beijing to form a broader international collaborative network of top researchers.

"The NFCR Center for Anti-Cancer Drug Design and Discovery at Yale University will stimulate new approaches to drug design and development that will undoubtedly lead to novel anticancer drugs and help save lives," said Franklin Salisbury, Jr., President of the National Foundation for Cancer Research.

Since it’s founding in 1973, NFCR has spent more than $230 million funding basic science cancer research and cancer prevention education focused on understanding how and why cells become cancerous. NFCR is dedicated to funding scientists who are discovering cancer’s molecular mysteries and translating these discoveries into therapies that hold the hope for curing cancer. For more information, visit www.NFCR.org or call 1-800-321-CURE (2873).

Contacts

National Foundation for Cancer Research
Silas Deane, 615-319-6007
sdeane@nfcr.org

For more information, visit www.NFCR.org or call 1-800-321-CURE (2873).