LIBERTY/LIBERTY1 USER GUIDE ## **Recommended Parameters** #### DEPROTECTION Temperature: 75 °C Time: 30 sec (Initial) 3 min (Deprotection) COUPLING Temperature: 75 °C Time: 5 min #### MICROWAVE POWER Specific power settings will vary depending on scale and the individual microwave. The power should be set so that the temperature reaches **75** °C in **70** sec, and the maximum temperature should not exceed 85 °C. The Run History file records the temperature during each microwave step, and should be reviewed periodically. Microwave methods can be adjusted in the Microwave Editor (Setup>Microwave Editor). ## **Special Coupling Cycles** ## **Cysteine and Histidine** Cysteine and histidine are susceptible to racemization at elevated temperature. **By default, Cys and His are coupled at 50 °C** to minimize racemization. If a non-default cycle is selected for Cys or His, ensure a 50 °C microwave method is used for the coupling. When using non-natural amino acids where racemization is a concern, the coupling temperature should be lowered to 50 °C. (See also CEM Application Note BIO-0003.) #### **Arginine** Arginine is susceptible to γ -lactam formation, greatly reducing the coupling efficiency. By default, Arg is coupled using a modified double coupling cycle. If a non-default cycle is selected for Arg, ensure that it is a double coupling method. (See also CEM Application Note BIO-0006.) ## **Standard Concentrations** The Liberty/Liberty1 uses stock solutions of all reagents. The default cycles are designed to deliver the proper volumes to give 5 eq of amino acid and activator and 10 eq of activator base for each coupling. | Reagent | Standard | 0.05 mmol
Scale* | |------------------------------|----------|---------------------| | Activator | 0.5 M | 0.25 M | | Activator Base | 2 M | 1 M | | Amino Acid | 0.2 M | 0.2 M | | Deprotection
(Piperidine) | 20% | 20% | *NOTE: Due to the size of the sample loops used for reagent delivery, when working on 0.05 mmol scale activator and activator base should be made at half the standard concentration. Other reagents do not need to be diluted. ## **Potential Side Reactions** ### **Aspartimide Formation** Aspartimide formation is a common side reaction that occurs in peptides containing Asp followed by Asn(Trt), Gly, Thr, or Ser. The use of **5% piperazine with 0.1 M HOBt** for the deprotection solution can reduce the amount of aspartimide formation. When using the UV monitoring option, HOBt shows significant UV absorbance. The use of **Fmoc-Asp(OMpe)-OH** in place of the more common Asp(OtBu) can reduce aspartimide formation without the addition of HOBt. #### **Tetramethyl Guanidinium Capping** For extended coupling times (10 minutes or longer), one potential issue is the tetramethylguanidinium capping of the free amine by HBTU (or other uronium-type activators). This side reaction is detected as a truncation of target +101 on mass spec. Capping by activator can be minimized by using a slight excess of other reagents (for example, 5 eq amino acid/4.5 eq HBTU/10 eq DIEA), or by using alternate activator strategies (such as DIC/HOBt). ## **Resin Selection** Most resins that are used for conventional peptide synthesis are compatible with microwave peptide synthesis. ## **Mesh Size** **Only 100-200 mesh resin** should be used with the Liberty/Liberty1. The use of 200-400 mesh resins will result in clogging of the reaction vessel frit and damaged to the system. ### **Acid-Sensitive Resins** Acid-sensitive resins, such as 2-chlorotrityl and HMPB, require special conditions during microwave synthesis. All couplings with these resins should be done at 50 °C, and no HOBt should be added to the deprotection solution. # LIBERTY/LIBERTY1 USER GUIDE ## **Reaction Vessel Selection** To select the appropriate reaction vessel, first look at the scale to ensure the volumes are reasonable, then look at the mass of resin required. If using **more than 3 g of resin** on the Liberty, use the **Skip Resin Loading** option and manually load the resin into the reaction vessel, then manually add solvent to swell. The 10 mL reaction vessel should be used for 0.05 mmol syntheses (up to 0.5 g of resin). The 35 mL (standard) reaction vessel should be used for 0.1 - 0.25 mmol syntheses (up to 1 g of resin). The 125 mL reaction vessel should be used for 0.5 - 5 mmol syntheses (up to 8 g of resin). ## **Reagents and Stability** #### **Amino Acids** Most amino acids are stable in solution for up to **two weeks**. After that, the amino acid will begin to crystallize, which can cause damage to the instrument. Notably, His is only stable for one week. Val, Ile, and Leu will begin to crash out sooner than other amino acids. #### **Activator/Base** Activators are stable for up to **one week**. Uronium-type activators (HBTU, HCTU, HATU) are light-sensitive, and should be **stored in amber bottles**. DIEA in NMP is stable for up to **two weeks**. #### **Deprotection** Deprotection solution (both 20% piperidine and 5% piperazine) are stable for up to **one month**. #### **Cleavage Cocktail** Cleavage cocktails are only stable for 24 hours. They should be discarded after **one day**. ## **Alternative Reagents** ### Piperidine/Piperazine 5% Piperazine can be used as an alternative to 20% piperidine. Under conventional synthesis conditions, piperazine requires extended deprotection times, but in the microwave full deprotection by piperazine is accomplished in the same time as piperidine. ## HOBt/HOBt•H,O/OxymaPure Anhydrous HOBt is considered explosive. The HOBt monohydrate can be used as a direct substitute for anhydrous HOBt and is stable to ship. OxymaPure can also be used as a direct substitute for HOBt. When using OxymaPure for coupling with DIC, some discoloration of the vent line on the reaction vessel may occur; this will not affect the operation of the Liberty/Liberty1. #### **EDT/DODT** DODT (dioxa-1,8-octane-dithiol) is a less malodorous alternative to EDT (ethane dithiol), and an be directly substituted for EDT without any difference in cleavage quality. ## **Using DIC/HOBt** In cases where synthesis with HBTU/DIEA yields poor quality peptides, DIC/HOBt is a good alternative approach. When coupling amino acids using DIC/HOBt, CEM recommends putting **0.5 M DIC in DMF on the Activator position**, and **1 M HOBt in DMF on the Activator Base position**. This will give 5 eq DIC and 5 eq HOBt in the final reaction mixture. ## **Reagent Quality** The quality of reagents used for synthesis, including the age of reagents, will have a significant impact on the quality of peptides produced. Solvents should be higher than ACS grade. DMF should not be used if it is more than six months old. TFA that has discolored (is no longer clear) should not be used; this can result in incomplete side chain deprotection. Amino acids should be stored at room temperature for no longer than six months, or in a freezer for no longer than a year. ## PEPTIDE CLEAVAGE AND ANALYSIS ## **Cleaving Peptides** Typically, cleavage is accomplished with trifluoroacetic acid (TFA). Scavenger molecules are added to the TFA to prevent the cleaved side chain protecting groups from reacting with the peptide. The particular scavengers used depend on the specific peptide sequence. For general use, CEM recommends 92.5% TFA / 2.5 % TIS / 2.5% DODT / 2.5% Water. Other Suitable Cocktails: - 82.5% TFA / 5% TIS / 5% Water / 5% Phenol / 5% EDT - 82.5% TFA / 5% Thioanisole / 5% Water / 5% Phenol / 5% EDT - 88% TFA / 5% TIS / 5% water / 2% Phenol - 90% TFA / 5% Thioanisole / 3% EDT / 2% Anisole At room temperature, peptides should be cleaved for 2 to 4 hours. Peptides containing multiple Arg residues will require longer cleavage times (3 hours or longer), because of the difficulty in removing the Pbf protecting group. In the microwave, peptides should be cleaved at 38 °C for 30 minutes to ensure complete deprotection. ## COMMON MASS DIFFERENCES ## Side Chain Protecting Groups Incomplete cleavage can result in mass additions due to incomplete removal of side chain protecting groups. | Mass
Difference | Reason | |--------------------|--------| | +100 | Вос | | +56 | tBu | | +242 | Trt | | +252 | Pbf | ## **Side Reactions** | Mass
Difference | Reason | |--------------------|----------------------| | -18 | Aspartimide | | +67 | Aspartimide | | +101 | Tetramethylguanidium | ## **N-terminal Modifications** | Mass
Difference | Reason | |--------------------|--------| | +223 | Fmoc | | +42 | Acetyl | ## **Amino Acid Deletions** | Mass
Difference | Reason | Mass
Difference | Reason | |--------------------|--------|--------------------|--------| | -71 | -Ala | -113 | -Leu | | -156 | -Arg | -128 | -Lys | | -114 | -Asn | -131 | -Met | | -115 | -Asp | -147 | -Phe | | -103 | -Cys | -97 | -Pro | | -128 | -Gln | -87 | -Ser | | -129 | -Glu | -101 | -Thr | | -57 | -Gly | -186 | -Trp | | -137 | -His | -147 | -Tyr | | -113 | -lle | -99 | -Val | ## Salts Because peptides are charged molecules, when analyzing peptides by ESI-MS, the target often is detected as a salt. | Mass
Difference | Reason | | |--------------------|-------------|--| | +23 | Na⁺ salt | | | +39 | K⁺ salt | | | +114 | TFA salt | | | +46 | Formic salt | | ## SPARE PARTS AND FURTHER INFORMATION ## **Reaction Vessels** | Part
Number | Name | Description | Picture | |----------------|-----------------------------------|--|---------| | 167260 | 30 mL
Reaction
Vessel Body | Standard 30 mL
Teflon reaction
vessel body that
connects to the
standard reaction
vessel attenuator | | | 542415 | 125 mL
Reaction
Vessel Body | Large 125 mL Teflon reaction vessel body that connects to the standard reaction vessel attenuator | 9 | | 167765 | 10 mL
Reaction
Vessel Body | Small 10 mL Teflon
reaction vessel
that connects to
the 10 mL vessel
attenuator | | ## **Filters** | Part
Number | Name | Description | Picture | |----------------|---------------------|--|---------| | 167485-M | Dip Tube
Filters | Replacement filters
for all reagent dip
tubes (bag of 50
filters) | | | 172150-M | Inline Filters | Replacement filters
for F1, F2, and F3
positions (box of
25) | | ## **For More Information** - PepDriver/PepDriver1 contains comprehensive Help Text with details about setup and operation of the system, as well as general information about microwave chemistry and peptide chemistry. The Help Text can be accessed by clicking the Help button on the PepDriver/ PepDriver1 main screen. - The Liberty Operation Manual (PN 600178) and the Liberty1 Operation Manual (PN 600192) have detailed information about setup and operation of the system, as well as a full list of spare parts. - For information about routine maintenance procedures, including monthly checklists, see the Liberty Maintenance Manual (PN 600119) or the Liberty1 Maintenance Manual (PN 600765). - For the latest information about CEM's products, including references and application notes, visit the CEM website at http://www.cem.com. The CEM website also hosts a peptide synthesis discussion forum, where CEM users can interface with other users from around the world. - CEM has a dedicated group of peptide chemists with access to a full laboratory. For applications support, contact CEM at (800) 726-3331 (US/Canada) or (704) 821-7015 and ask for "peptide support", or by email at peptides@cem.com. For service, contact CEM Service at (800) 726-5551 (US/Canada) or (704) 821-7015 and ask for "Liberty/Liberty1 Service".